Use the power method algorithm to compute the eigenvalue with the largest magnitude of the following matrix: A=[ 2 3 3 -4 ] | Numerade (2024)

`); let searchUrl = `/search/`; history.forEach((elem) => { prevsearch.find('#prevsearch-options').append(`

${elem}

`); }); } $('#search-pretype-options').empty(); $('#search-pretype-options').append(prevsearch); let prevbooks = $(false); [ {title:"Recently Opened Textbooks", books:previous_books}, {title:"Recommended Textbooks", books:recommended_books} ].forEach((book_segment) => { if (Array.isArray(book_segment.books) && book_segment.books.length>0 && nsegments<2) { nsegments+=1; prevbooks = $(`

  • ${book_segment.title}
  • `); let searchUrl = "/books/xxx/"; book_segment.books.forEach((elem) => { prevbooks.find('#prevbooks-options'+nsegments.toString()).append(`

    ${elem.title} ${ordinal(elem.edition)} ${elem.author}

    `); }); } $('#search-pretype-options').append(prevbooks); }); } function anon_pretype() { let prebooks = null; try { prebooks = JSON.parse(localStorage.getItem('PRETYPE_BOOKS_ANON')); }catch(e) {} if ('previous_books' in prebooks && 'recommended_books' in prebooks) { previous_books = prebooks.previous_books; recommended_books = prebooks.recommended_books; if (typeof PREVBOOKS !== 'undefined' && Array.isArray(PREVBOOKS)) { new_prevbooks = PREVBOOKS; previous_books.forEach(elem => { for (let i = 0; i < new_prevbooks.length; i++) { if (elem.id == new_prevbooks[i].id) { return; } } new_prevbooks.push(elem); }); new_prevbooks = new_prevbooks.slice(0,3); previous_books = new_prevbooks; } if (typeof RECBOOKS !== 'undefined' && Array.isArray(RECBOOKS)) { new_recbooks = RECBOOKS; for (let j = 0; j < new_recbooks.length; j++) { new_recbooks[j].viewed_at = new Date(); } let insert = true; for (let i=0; i < recommended_books.length; i++){ for (let j = 0; j < new_recbooks.length; j++) { if (recommended_books[i].id == new_recbooks[j].id) { insert = false; } } if (insert){ new_recbooks.push(recommended_books[i]); } } new_recbooks.sort((a,b)=>{ adate = new Date(2000, 0, 1); bdate = new Date(2000, 0, 1); if ('viewed_at' in a) {adate = new Date(a.viewed_at);} if ('viewed_at' in b) {bdate = new Date(b.viewed_at);} // 100000000: instead of just erasing the suggestions from previous week, // we just move them to the back of the queue acurweek = ((new Date()).getDate()-adate.getDate()>7)?0:100000000; bcurweek = ((new Date()).getDate()-bdate.getDate()>7)?0:100000000; aviews = 0; bviews = 0; if ('views' in a) {aviews = acurweek+a.views;} if ('views' in b) {bviews = bcurweek+b.views;} return bviews - aviews; }); new_recbooks = new_recbooks.slice(0,3); recommended_books = new_recbooks; } localStorage.setItem('PRETYPE_BOOKS_ANON', JSON.stringify({ previous_books: previous_books, recommended_books: recommended_books })); build_popup(); } } var whiletyping_search_object = null; var whiletyping_search = { books: [], curriculum: [], topics: [] } var single_whiletyping_ajax_promise = null; var whiletyping_database_initial_burst = 0; //number of consecutive calls, after 3 we start the 1 per 5 min calls function get_whiletyping_database() { //gets the database from the server. // 1. by validating against a local database value we confirm that the framework is working and // reduce the ammount of continuous calls produced by errors to 1 per 5 minutes. return localforage.getItem('whiletyping_last_attempt').then(function(value) { if ( value==null || (new Date()) - (new Date(value)) > 1000*60*5 || (whiletyping_database_initial_burst < 3) ) { localforage.setItem('whiletyping_last_attempt', (new Date()).getTime()); // 2. Make an ajax call to the server and get the search database. let databaseUrl = `/search/whiletype_database/`; let resp = single_whiletyping_ajax_promise; if (resp === null) { whiletyping_database_initial_burst = whiletyping_database_initial_burst + 1; single_whiletyping_ajax_promise = resp = new Promise((resolve, reject) => { $.ajax({ url: databaseUrl, type: 'POST', data:{csrfmiddlewaretoken: "wEJjdC45s06g1bkRfmVZd6T87ViCwMwRJ0z7MG27p0sMXtXOG78ly5YVWcdtwbl9"}, success: function (data) { // 3. verify that the elements of the database exist and are arrays if ( ('books' in data) && ('curriculum' in data) && ('topics' in data) && Array.isArray(data.books) && Array.isArray(data.curriculum) && Array.isArray(data.topics)) { localforage.setItem('whiletyping_last_success', (new Date()).getTime()); localforage.setItem('whiletyping_database', data); resolve(data); } }, error: function (error) { console.log(error); resolve(null); }, complete: function (data) { single_whiletyping_ajax_promise = null; } }) }); } return resp; } return Promise.resolve(null); }).catch(function(err) { console.log(err); return Promise.resolve(null); }); } function get_whiletyping_search_object() { // gets the fuse objects that will be in charge of the search if (whiletyping_search_object){ return Promise.resolve(whiletyping_search_object); } database_promise = localforage.getItem('whiletyping_database').then(function(database) { return localforage.getItem('whiletyping_last_success').then(function(last_success) { if (database==null || (new Date()) - (new Date(last_success)) > 1000*60*60*24*30 || (new Date('2023-04-25T00:00:00')) - (new Date(last_success)) > 0) { // New database update return get_whiletyping_database().then(function(new_database) { if (new_database) { database = new_database; } return database; }); } else { return Promise.resolve(database); } }); }); return database_promise.then(function(database) { if (database) { const options = { isCaseSensitive: false, includeScore: true, shouldSort: true, // includeMatches: false, // findAllMatches: false, // minMatchCharLength: 1, // location: 0, threshold: 0.2, // distance: 100, // useExtendedSearch: false, ignoreLocation: true, // ignoreFieldNorm: false, // fieldNormWeight: 1, keys: [ "title" ] }; let curriculum_index={}; let topics_index={}; database.curriculum.forEach(c => curriculum_index[c.id]=c); database.topics.forEach(t => topics_index[t.id]=t); for (j=0; j

    Solutions
  • Textbooks
  • `); } function build_solutions() { if (Array.isArray(solution_search_result)) { const viewAllHTML = userSubscribed ? `View All` : ''; var solutions_section = $(`
  • Solutions ${viewAllHTML}
  • `); let questionUrl = "/questions/xxx/"; let askUrl = "/ask/question/xxx/"; solution_search_result.forEach((elem) => { let url = ('course' in elem)?askUrl:questionUrl; let solution_type = ('course' in elem)?'ask':'question'; let subtitle = ('course' in elem)?(elem.course??""):(elem.book ?? "")+"    "+(elem.chapter?"Chapter "+elem.chapter:""); solutions_section.find('#whiletyping-solutions').append(` ${elem.text} ${subtitle} `); }); $('#search-solution-options').empty(); if (Array.isArray(solution_search_result) && solution_search_result.length>0){ $('#search-solution-options').append(solutions_section); } MathJax.typesetPromise([document.getElementById('search-solution-options')]); } } function build_textbooks() { $('#search-pretype-options').empty(); $('#search-pretype-options').append($('#search-solution-options').html()); if (Array.isArray(textbook_search_result)) { var books_section = $(`
  • Textbooks View All
  • `); let searchUrl = "/books/xxx/"; textbook_search_result.forEach((elem) => { books_section.find('#whiletyping-books').append(` ${elem.title} ${ordinal(elem.edition)} ${elem.author} `); }); } if (Array.isArray(textbook_search_result) && textbook_search_result.length>0){ $('#search-pretype-options').append(books_section); } } function build_popup(first_time = false) { if ($('#search-text').val()=='') { build_pretype(); } else { solution_and_textbook_search(); } } var search_text_out = true; var search_popup_out = true; const is_login = false; const user_hash = null; function pretype_setup() { $('#search-text').focusin(function() { $('#search-popup').addClass('show'); resize_popup(); search_text_out = false; }); $( window ).resize(function() { resize_popup(); }); $('#search-text').focusout(() => { search_text_out = true; if (search_text_out && search_popup_out) { $('#search-popup').removeClass('show'); } }); $('#search-popup').mouseenter(() => { search_popup_out = false; }); $('#search-popup').mouseleave(() => { search_popup_out = true; if (search_text_out && search_popup_out) { $('#search-popup').removeClass('show'); } }); $('#search-text').on("keyup", delay(() => { build_popup(); }, 200)); build_popup(true); let prevbookUrl = `/search/pretype_books/`; let prebooks = null; try { prebooks = JSON.parse(localStorage.getItem('PRETYPE_BOOKS_'+(is_login?user_hash:'ANON'))); }catch(e) {} if (prebooks && 'previous_books' in prebooks && 'recommended_books' in prebooks) { if (is_login) { previous_books = prebooks.previous_books; recommended_books = prebooks.recommended_books; if (prebooks.time && new Date().getTime()-prebooks.time<1000*60*60*6) { build_popup(); return; } } else { anon_pretype(); return; } } $.ajax({ url: prevbookUrl, method: 'POST', data:{csrfmiddlewaretoken: "wEJjdC45s06g1bkRfmVZd6T87ViCwMwRJ0z7MG27p0sMXtXOG78ly5YVWcdtwbl9"}, success: function(response){ previous_books = response.previous_books; recommended_books = response.recommended_books; if (is_login) { localStorage.setItem('PRETYPE_BOOKS_'+user_hash, JSON.stringify({ previous_books: previous_books, recommended_books: recommended_books, time: new Date().getTime() })); } build_popup(); }, error: function(response){ console.log(response); } }); } $( document ).ready(pretype_setup); $( document ).ready(function(){ $('#search-popup').on('click', '.search-view-item', function(e) { e.preventDefault(); let autoCompleteSearchViewUrl = `/search/autocomplete_search_view/`; let objectUrl = $(this).attr('href'); let selectedId = $(this).data('objid'); let searchResults = []; $("#whiletyping-solutions").find("a").each(function() { let is_selected = selectedId === $(this).data('objid'); searchResults.push({ objectId: $(this).data('objid'), contentType: $(this).data('contenttype'), category: $(this).data('category'), selected: is_selected }); }); $("#whiletyping-books").find("a").each(function() { let is_selected = selectedId === $(this).data('objid'); searchResults.push({ objectId: $(this).data('objid'), contentType: $(this).data('contenttype'), category: $(this).data('category'), selected: is_selected }); }); $.ajax({ url: autoCompleteSearchViewUrl, method: 'POST', data:{ csrfmiddlewaretoken: "wEJjdC45s06g1bkRfmVZd6T87ViCwMwRJ0z7MG27p0sMXtXOG78ly5YVWcdtwbl9", query: $('#search-text').val(), searchObjects: JSON.stringify(searchResults) }, dataType: 'json', complete: function(data){ window.location.href = objectUrl; } }); }); });
    Use the power method algorithm to compute the eigenvalue with the largest magnitude of the following matrix: A=[
    2     3 
     3     -4
] | Numerade (2024)

    FAQs

    What is the power method for finding the largest eigenvalue? ›

    The Power Method

    Ak2x0 Ak1x0}, where Ak1x0 is the approximate eigenvector corresponding to the largest eigenvalue. This method can be effective in some cases; however, its main importance is that it leads to ideas that use a combination of vectors from the Krylov subspace.

    How to calculate the largest eigenvalue of a matrix? ›

    The Algebraic Eigenvalue Problem

    If a real matrix has a simple eigenvalue of largest magnitude, the sequence x k = A x k – 1 converges to the eigenvector corresponding to the largest eigenvalue, where x0 is a normalized initial approximation, and all subsequent xk are normalized. This is known as the power method.

    What is the power method in numerical analysis? ›

    We now describe the power method for computing the dominant eigenpair. Its exten- sion to the inverse power method is practical for finding any eigenvalue provided that a good initial approximation is known. Some schemes for finding eigenvalues use other methods that converge fast, but have limited precision.

    How to find the smallest eigenvalue of a matrix? ›

    If you know that A is symmetric positive-definite, then the spectral shift B=A−λmaxI will work. Use the power method on B, then add λmax to the result to get the smallest eigenvalue of A. The reason this shift works is that a positive-definite matrix has all positive eigenvalues.

    What is the meaning of largest eigenvalue? ›

    The largest eigenvalue is the maximum pole of the system (in terms of magnitude). If the system is described in its state-space form. ˙x=Ax+Bu x ˙ = A x + B u.

    What is the largest eigenvalue of a Markov matrix? ›

    Therefore |λ| ≤ 1. Remark If Π is the transition matrix for a Markov chain then Π is row-stochastic, hence it has a largest right eigenvalue of 1.

    What algorithm finds the largest eigenvalue? ›

    Power iteration finds the largest eigenvalue in absolute value, so even when λ is only an approximate eigenvalue, power iteration is unlikely to find it a second time. Conversely, inverse iteration based methods find the lowest eigenvalue, so μ is chosen well away from λ and hopefully closer to some other eigenvalue.

    What is an eigenvalue of a 3x3 matrix? ›

    In general, the eigenvalues of a real 3 by 3 matrix can be. (i) three distinct real numbers, as here; (ii) three real numbers with repetitions; (iii) one real number and two conjugate non-real numbers.

    How many eigenvalues should a 3x3 matrix have? ›

    If you have 3 distinct eigenvalues for a 3x3 matrix, it is diagonalizable because we will have 3 distinct associated eigenvectors.

    What is the power analysis formula? ›

    In hypothesis testing, we usually focus on power, which is defined as the probability that we reject H0 when it is false, i.e., power = 1- β = P(Reject H0 | H0 is false). Power is the probability that a test correctly rejects a false null hypothesis.

    What is the power series method in numerical analysis? ›

    In mathematics, the power series method is used to seek a power series solution to certain differential equations. In general, such a solution assumes a power series with unknown coefficients, then substitutes that solution into the differential equation to find a recurrence relation for the coefficients.

    What is the easiest way to find eigenvalues of a matrix? ›

    How can We Find the Eigenvalues of Matrix? To find the eigenvalues of a square matrix A: Find its characteristic equation using |A - λI| = 0, where I is the identity matrix of same order A. Solve it for λ and the solutions would give the eigenvalues.

    How do you find the size of a matrix in Eigen? ›

    The current size of a matrix can be retrieved by rows(), cols() and size(). These methods return the number of rows, the number of columns and the number of coefficients, respectively.

    What is the minimum value of eigenvalue? ›

    From the property of eigen values, product of eigen values is equal to determinant. Hence product of eigen values is zero. That implies one of the eigen values is zero. From the options, minimum value is zero.

    Can you use the power method to find all eigenvalues of a given matrix? ›

    The power method gives a technique for finding the dominant eigenvalue of a matrix. We can modify the method to find the other eigenvalues as well.

    What is the Jacobi method of eigenvalues? ›

    The Jacobi eigenvalue method repeatedly performs rotations until the matrix becomes almost diagonal. Then the elements in the diagonal are approximations of the (real) eigenvalues of S.

    How do you find the second largest eigenvalue? ›

    The traditional way to obtain this information is to subtract the contribution of the largest eigenvalue from the matrix, followed by an estimate of the largest eigenvalue of the remaining matrix.

    What is the inverse power method of eigenvalue? ›

    There are additional numerical techniques for calculating other eigenvalues. One such technique is the Inverse Power Method, which finds the smallest eigenvalue of a matrix essentially by using the Power Method on the inverse of the matrix.

    References

    Top Articles
    Latest Posts
    Article information

    Author: Roderick King

    Last Updated:

    Views: 5964

    Rating: 4 / 5 (71 voted)

    Reviews: 86% of readers found this page helpful

    Author information

    Name: Roderick King

    Birthday: 1997-10-09

    Address: 3782 Madge Knoll, East Dudley, MA 63913

    Phone: +2521695290067

    Job: Customer Sales Coordinator

    Hobby: Gunsmithing, Embroidery, Parkour, Kitesurfing, Rock climbing, Sand art, Beekeeping

    Introduction: My name is Roderick King, I am a cute, splendid, excited, perfect, gentle, funny, vivacious person who loves writing and wants to share my knowledge and understanding with you.