Numerical integration
collapse all in page
Syntax
q = integral(fun,xmin,xmax)
q = integral(fun,xmin,xmax,Name,Value)
Description
example
q = integral(fun,xmin,xmax)
numericallyintegrates function fun
from xmin
to xmax
usingglobal adaptive quadrature and default error tolerances.
example
q = integral(fun,xmin,xmax,Name,Value)
specifiesadditional options with one or more Name,Value
pairarguments. For example, specify 'WayPoints'
followedby a vector of real or complex numbers to indicate specific pointsfor the integrator to use.
Examples
collapse all
Improper Integral
Open Live Script
Create the function .
fun = @(x) exp(-x.^2).*log(x).^2;
Evaluate the integral from x=0
to x=Inf
.
q = integral(fun,0,Inf)
q = 1.9475
Parameterized Function
Open Live Script
Create the function with one parameter, .
fun = @(x,c) 1./(x.^3-2*x-c);
Evaluate the integral from x=0
to x=2
at c=5
.
q = integral(@(x) fun(x,5),0,2)
q = -0.4605
See Parameterizing Functions for more information on this technique.
Singularity at Lower Limit
Open Live Script
Create the function .
fun = @(x)log(x);
Evaluate the integral from x=0
to x=1
with the default error tolerances.
format longq1 = integral(fun,0,1)
q1 = -1.000000010959678
Evaluate the integral again, this time with 12 decimal places of accuracy. Set RelTol
to zero so that integral
only attempts to satisfy the absolute error tolerance.
q2 = integral(fun,0,1,'RelTol',0,'AbsTol',1e-12)
q2 = -1.000000000000010
Complex Contour Integration Using Waypoints
Open Live Script
Create the function .
fun = @(z) 1./(2*z-1);
Integrate in the complex plane over the triangular path from 0
to 1+1i
to 1-1i
to 0
by specifying waypoints.
q = integral(fun,0,0,'Waypoints',[1+1i,1-1i])
q = 0.0000 - 3.1416i
Vector-Valued Function
Open Live Script
Create the vector-valued function and integrate from x=0
to x=1
. Specify 'ArrayValued',true
to evaluate the integral of an array-valued or vector-valued function.
fun = @(x)sin((1:5)*x);q = integral(fun,0,1,'ArrayValued',true)
q = 1×5 0.4597 0.7081 0.6633 0.4134 0.1433
Improper Integral of Oscillatory Function
Open Live Script
Create the function .
fun = @(x)x.^5.*exp(-x).*sin(x);
Evaluate the integral from x=0
to x=Inf
, adjusting the absolute and relative tolerances.
format longq = integral(fun,0,Inf,'RelTol',1e-8,'AbsTol',1e-13)
q = -14.999999999998360
Input Arguments
collapse all
fun
— Integrand
function handle
Integrand, specified as a function handle, which defines thefunction to be integrated from xmin
to xmax
.
For scalar-valued problems, the function y = fun(x)
must accept a vector argument, x
, and return a vector result, y
. This generally means that fun
must use array operators instead of matrix operators. For example, use .*
(times
) rather than *
(mtimes
). If you set the 'ArrayValued'
option to true
, then fun
must accept a scalar and return an array of fixed size.
xmin
— Lower limit of x
real number | complex number
Lower limit of x, specified as a real (finiteor infinite) scalar value or a complex (finite) scalar value. If either xmin
or xmax
arecomplex, then integral
approximates the pathintegral from xmin
to xmax
overa straight line path.
Data Types: double
| single
Complex Number Support: Yes
xmax
— Upper limit of x
real number | complex number
Upper limit of x, specified as a real number(finite or infinite) or a complex number (finite). If either xmin
or xmax
arecomplex, integral
approximates the path integralfrom xmin
to xmax
over a straightline path.
Data Types: double
| single
Complex Number Support: Yes
Name-Value Arguments
Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN
, where Name
is the argument name and Value
is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.
Before R2021a, use commas to separate each name and value, and enclose Name
in quotes.
Example: integral(fun,a,b,'AbsTol',1e-12)
sets the absolute error tolerance to approximately 12 decimal places of accuracy.
AbsTol
— Absolute error tolerance
1e-10
(default) | nonnegative real number
Absolute error tolerance, specified as the comma-separated pair consisting of 'AbsTol'
and a nonnegative real number. integral
uses the absolute error tolerance to limit an estimate of the absolute error, |q – Q|, where q is the computed value of the integral and Q is the (unknown) exact value. integral
might provide more decimal places of precision if you decrease the absolute error tolerance.
Note
AbsTol
and RelTol
worktogether. integral
might satisfy the absoluteerror tolerance or the relative error tolerance, but not necessarilyboth. For more information on using these tolerances, see the Tips section.
Example: integral(fun,a,b,'AbsTol',1e-12)
sets the absolute error tolerance to approximately 12 decimal places of accuracy.
Data Types: single
| double
RelTol
— Relative error tolerance
1e-6
(default) | nonnegative real number
Relative error tolerance, specified as the comma-separated pair consisting of 'RelTol'
and a nonnegative real number. integral
uses the relative error tolerance to limit an estimate of the relative error, |q – Q|/|Q|, where q is the computed value of the integral and Q is the (unknown) exact value. integral
might provide more significant digits of precision if you decrease the relative error tolerance.
Note
RelTol
and AbsTol
worktogether. integral
might satisfy the relativeerror tolerance or the absolute error tolerance, but not necessarilyboth. For more information on using these tolerances, see the Tips section.
Example: integral(fun,a,b,'RelTol',1e-9)
sets the relative error tolerance to approximately 9 significant digits.
Data Types: single
| double
ArrayValued
— Array-valued function flag
false
or 0
(default) | true
or 1
Array-valued function flag, specified as the comma-separated pair consisting of 'ArrayValued'
and a numeric or logical 1
(true
) or 0
(false
). Set this flag to true
or 1
to indicate that fun
is a function that accepts a scalar input and returns a vector, matrix, or N-D array output.
The default value of false
indicates that fun
is a function that accepts a vector input and returns a vector output.
Example: integral(fun,a,b,'ArrayValued',true)
indicates that the integrand is an array-valued function.
Waypoints
— Integration waypoints
vector
Integration waypoints, specified as the comma-separated pair consisting of 'Waypoints'
and a vector of real or complex numbers. Use waypoints to indicate points in the integration interval that you would like the integrator to use in the initial mesh:
Add more evaluation points near interesting features of the function, such as a local extrema.
Integrate efficiently across discontinuities of the integrand by specifying the locations of the discontinuities.
Perform complex contour integrations by specifying complex numbers as waypoints. If
xmin
,xmax
, or any entry of the waypoints vector is complex, then the integration is performed over a sequence of straight line paths in the complex plane. In this case, all of the integration limits and waypoints must be finite.
Do not use waypoints to specify singularities. Instead, split the interval and add the results of separate integrations with the singularities at the endpoints.
Example: integral(fun,a,b,'Waypoints',[1+1i,1-1i])
specifies two complex waypoints along the interval of integration.
Data Types: single
| double
Complex Number Support: Yes
Tips
The
integral
function attempts to satisfy:whereabs(q - Q) <= max(AbsTol,RelTol*abs(q))
q
is the computed value of the integral andQ
is the (unknown) exact value. The absolute and relative tolerances provide a way of trading off accuracy and computation time. Usually, the relative tolerance determines the accuracy of the integration. However ifabs(q)
is sufficiently small, the absolute tolerance determines the accuracy of the integration. You should generally specify both absolute and relative tolerances together.If you are specifying single-precision limits of integration, or if
fun
returns single-precision results, you might need to specify larger absolute and relative error tolerances.
References
[1] L.F. Shampine “VectorizedAdaptive Quadrature in MATLAB®,” Journalof Computational and Applied Mathematics, 211, 2008, pp.131–140.
Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
Usage notes and limitations:
You must enable support for variable-size arrays.
The
integral
function does not support function handles that return sparse matrix output.
Thread-Based Environment
Run code in the background using MATLAB® backgroundPool
or accelerate code with Parallel Computing Toolbox™ ThreadPool
.
This function fully supports thread-based environments. For more information, see Run MATLAB Functions in Thread-Based Environment.
Version History
Introduced in R2012a
See Also
integral2 | integral3 | trapz
Topics
- Integration of Numeric Data
- Integration to Find Arc Length
- Complex Line Integrals
- Create Function Handle
- Parameterizing Functions
MATLAB-Befehl
Sie haben auf einen Link geklickt, der diesem MATLAB-Befehl entspricht:
Führen Sie den Befehl durch Eingabe in das MATLAB-Befehlsfenster aus. Webbrowser unterstützen keine MATLAB-Befehle.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list:
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- Deutsch
- English
- Français
- United Kingdom (English)
Contact your local office